Saturday, 24 December 2016

Importance of Data Mining Services in Business

Importance of Data Mining Services in Business

Data mining is used in re-establishment of hidden information of the data of the algorithms. It helps to extract the useful information starting from the data, which can be useful to make practical interpretations for the decision making.
It can be technically defined as automated extraction of hidden information of great databases for the predictive analysis. In other words, it is the retrieval of useful information from large masses of data, which is also presented in an analyzed form for specific decision-making. Although data mining is a relatively new term, the technology is not. It is thus also known as Knowledge discovery in databases since it grip searching for implied information in large databases.
It is primarily used today by companies with a strong customer focus - retail, financial, communication and marketing organizations. It is having lot of importance because of its huge applicability. It is being used increasingly in business applications for understanding and then predicting valuable data, like consumer buying actions and buying tendency, profiles of customers, industry analysis, etc. It is used in several applications like market research, consumer behavior, direct marketing, bioinformatics, genetics, text analysis, e-commerce, customer relationship management and financial services.

However, the use of some advanced technologies makes it a decision making tool as well. It is used in market research, industry research and for competitor analysis. It has applications in major industries like direct marketing, e-commerce, customer relationship management, scientific tests, genetics, financial services and utilities.

Data mining consists of major elements:

    Extract and load operation data onto the data store system.
    Store and manage the data in a multidimensional database system.
    Provide data access to business analysts and information technology professionals.
    Analyze the data by application software.
    Present the data in a useful format, such as a graph or table.

The use of data mining in business makes the data more related in application. There are several kinds of data mining: text mining, web mining, relational databases, graphic data mining, audio mining and video mining, which are all used in business intelligence applications. Data mining software is used to analyze consumer data and trends in banking as well as many other industries.

Outsourcing Web Research offer complete Data Mining Services and Solutions to quickly collective data and information from multiple Internet sources for your Business needs in a cost efficient manner.

Sourec : http://ezinearticles.com/?Importance-of-Data-Mining-Services-in-Business&id=2601221

Thursday, 15 December 2016

Data Extraction Services - A Helpful Hand For Large Organization

Data Extraction Services - A Helpful Hand For Large Organization

The data extraction is the way to extract and to structure data from not structured and semi-structured electronic documents, as found on the web and in various data warehouses. Data extraction is extremely useful for the huge organizations which deal with considerable amounts of data, daily, which must be transformed into significant information and be stored for the use this later on.

Your company with tons of data but it is difficult to control and convert the data into useful information. Without right information at the right time and based on half of accurate information, decision makers with a company waste time by making wrong strategic decisions. In high competing world of businesses, the essential statistics such as information customer, the operational figures of the competitor and the sales figures inter-members play a big role in the manufacture of the strategic decisions. It can help you to take strategic business decisions that can shape your business' goals..

Outsourcing companies provide custom made services to the client's requirements. A few of the areas where it can be used to generate better sales leads, extract and harvest product pricing data, capture financial data, acquire real estate data, conduct market research , survey and analysis, conduct product research and analysis and duplicate an online database..

The different types of Data Extraction Services:

    Database Extraction:
Reorganized data from multiple databases such as statistics about competitor's products, pricing and latest offers and customer opinion and reviews can be extracted and stored as per the requirement of company.

    Web Data Extraction:
Web Data Extraction is also known as data Extraction which is usually referred to the practice of extract or reading text data from a targeted website.

Businesses have now realized about the huge benefits they can get by outsourcing their services. Then outsourcing is profitable option for business. Since all projects are custom based to suit the exact needs of the customer, huge savings in terms of time, money and infrastructure are among the many advantages that outsourcing brings.

Advantages of Outsourcing Data Extraction Services:

    Improved technology scalability
    Skilled and qualified technical staff who are proficient in English
    Advanced infrastructure resources
    Quick turnaround time
    Cost-effective prices
    Secure Network systems to ensure data safety
    Increased market coverage

By outsourcing, you can definitely increase your competitive advantages. Outsourcing of services helps businesses to manage their data effectively, which in turn would enable them to experience an increase in profits.

Outsourcing Web Research offer complete Data Extraction Services and Solutions to quickly collective data and information from multiple Internet sources for your Business needs in a cost efficient manner. For more info please visit us at: http://www.webscrapingexpert.com/ or directly send your requirements at: info@webscrapingexpert.com

Source:http://ezinearticles.com/?Data-Extraction-Services---A-Helpful-Hand-For-Large-Organization&id=2477589

Friday, 9 December 2016

Increasing Accessibility by Scraping Information From PDF

Increasing Accessibility by Scraping Information From PDF

You may have heard about data scraping which is a method that is being used by computer programs in extracting data from an output that comes from another program. To put it simply, this is a process which involves the automatic sorting of information that can be found on different resources including the internet which is inside an html file, PDF or any other documents. In addition to that, there is the collection of pertinent information. These pieces of information will be contained into the databases or spreadsheets so that the users can retrieve them later.

Most of the websites today have text that can be accessed and written easily in the source code. However, there are now other businesses nowadays that choose to make use of Adobe PDF files or Portable Document Format. This is a type of file that can be viewed by simply using the free software known as the Adobe Acrobat. Almost any operating system supports the said software. There are many advantages when you choose to utilize PDF files. Among them is that the document that you have looks exactly the same even if you put it in another computer so that you can view it. Therefore, this makes it ideal for business documents or even specification sheets. Of course there are disadvantages as well. One of which is that the text that is contained in the file is converted into an image. In this case, it is often that you may have problems with this when it comes to the copying and pasting.

This is why there are some that start scraping information from PDF. This is often called PDF scraping in which this is the process that is just like data scraping only that you will be getting information that is contained in your PDF files. In order for you to begin scraping information from PDF, you must choose and exploit a tool that is specifically designed for this process. However, you will find that it is not easy to locate the right tool that will enable you to perform PDF scraping effectively. This is because most of the tools today have problems in obtaining exactly the same data that you want without personalizing them.

Nevertheless, if you search well enough, you will be able to encounter the program that you are looking for. There is no need for you to have programming language knowledge in order for you to use them. You can easily specify your own preferences and the software will do the rest of the work for you. There are also companies out there that you can contact and they will perform the task since they have the right tools that they can use. If you choose to do things manually, you will find that this is indeed tedious and complicated whereas if you compare this to having professionals do the job for you, they will be able to finish it in no time at all. Scraping information from PDF is a process where you collect the information that can be found on the internet and this does not infringe copyright laws.

Source:http://ezinearticles.com/?Increasing-Accessibility-by-Scraping-Information-From-PDF&id=4593863

Wednesday, 30 November 2016

PDF Scraping: Making Modern File Formats More Accessible

PDF Scraping: Making Modern File Formats More Accessible

Data scraping is the process of automatically sorting through information contained on the internet inside html, PDF or other documents and collecting relevant information to into databases and spreadsheets for later retrieval. On most websites, the text is easily and accessibly written in the source code but an increasing number of businesses are using Adobe PDF format (Portable Document Format: A format which can be viewed by the free Adobe Acrobat software on almost any operating system. See below for a link.). The advantage of PDF format is that the document looks exactly the same no matter which computer you view it from making it ideal for business forms, specification sheets, etc.; the disadvantage is that the text is converted into an image from which you often cannot easily copy and paste. PDF Scraping is the process of data scraping information contained in PDF files. To PDF scrape a PDF document, you must employ a more diverse set of tools.

There are two main types of PDF files: those built from a text file and those built from an image (likely scanned in). Adobe's own software is capable of PDF scraping from text-based PDF files but special tools are needed for PDF scraping text from image-based PDF files. The primary tool for PDF scraping is the OCR program. OCR, or Optical Character Recognition, programs scan a document for small pictures that they can separate into letters. These pictures are then compared to actual letters and if matches are found, the letters are copied into a file. OCR programs can perform PDF scraping of image-based PDF files quite accurately but they are not perfect.

Once the OCR program or Adobe program has finished PDF scraping a document, you can search through the data to find the parts you are most interested in. This information can then be stored into your favorite database or spreadsheet program. Some PDF scraping programs can sort the data into databases and/or spreadsheets automatically making your job that much easier.

Quite often you will not find a PDF scraping program that will obtain exactly the data you want without customization. Surprisingly a search on Google only turned up one business, (the amusingly named ScrapeGoat.com that will create a customized PDF scraping utility for your project. A handful of off the shelf utilities claim to be customizable, but seem to require a bit of programming knowledge and time commitment to use effectively. Obtaining the data yourself with one of these tools may be possible but will likely prove quite tedious and time consuming. It may be advisable to contract a company that specializes in PDF scraping to do it for you quickly and professionally.

Let's explore some real world examples of the uses of PDF scraping technology. A group at Cornell University wanted to improve a database of technical documents in PDF format by taking the old PDF file where the links and references were just images of text and changing the links and references into working clickable links thus making the database easy to navigate and cross-reference. They employed a PDF scraping utility to deconstruct the PDF files and figure out where the links were. They then could create a simple script to re-create the PDF files with working links replacing the old text image.

A computer hardware vendor wanted to display specifications data for his hardware on his website. He hired a company to perform PDF scraping of the hardware documentation on the manufacturers' website and save the PDF scraped data into a database he could use to update his webpage automatically.

PDF Scraping is just collecting information that is available on the public internet. PDF Scraping does not violate copyright laws.

PDF Scraping is a great new technology that can significantly reduce your workload if it involves retrieving information from PDF files. Applications exist that can help you with smaller, easier PDF Scraping projects but companies exist that will create custom applications for larger or more intricate PDF Scraping jobs.

Source: http://ezinearticles.com/?PDF-Scraping:-Making-Modern-File-Formats-More-Accessible&id=193321

Monday, 28 November 2016

How Xpath Plays Vital Role In Web Scraping

How Xpath Plays Vital Role In Web Scraping

XPath is a language for finding information in structured documents like XML or HTML. You can say that XPath is (sort of) SQL for XML or HTML files. XPath is used to navigate through elements and attributes in an XML or HTML document.

To understand XPath we must be clear about elements and nodes which are the building blocks of XML and HTML. Let’s talk about them. Here is an example element in an HTML document:

   <a class=”hyperlink” href=http://www.google.com>google</a>

Copy the above text to a file, name it as sample.html and open it in a browser. This will end up as a text link displaying the words “google” and it will take you to www.google.com. For each element there are three main parts: The type, the attributes, andthe text. They are listed below:

 a                                 Type
class,  href                Attributes
google                       Text

Let’s grab some XPath developer tools. I am on Firebug for Firefox or you can use Chrome’s developer tools. We will now form some XPath expressions to extract data from the above element. We will also verify the XPath by using Firebug Console.

For extracting the text “google”:

   //a[@href]/text()   

   //a[@class=”hyperlink”]/text()
 
For extracting the hyperlink i.e. ”www.google.com” :

   //a/@href
//a[@class=”hyperlink”]/@href

That’s all with a single element but in reality, you need to deal with more complex forms.

Let’s proceed to the idea of nodes, and its familial relationship of HTML elements. Look at this example code:

 <div title=”Section1″>

   <table id=”Search”>

       <tr class=”Yahoo”>Yahoo Search</tr>

       <tr class=”Google”>Google Search</tr>

   </table>

</div>

 Notice the </div> at the bottom? That means the table and tr elements are contained within the div. These other elements are considered descendants of the div. The table is a child, and the tr is a grandchild (and so on and so forth). The two tr elements are considered siblings each other. This is vital, as XPath uses these relationships to find your element.

So suppose you want to find the Google item. Any of the following expressions will work:

   //tr[@class=’Google’]
   //div/table/tr[2]
  //div[@title=”Section1″]//tr

So let’s analyze the expressions. We start at the top element (also known as a node). The // means to search all descendants, / means to just look at the current element’s children. So //div means look through all descendants for a div element. The brackets [] specify something about that element. So we can look for an attribute with the @ symbol, or look for text with the text() function. We can chain as many of these together as we can.

Here is a quick reference:

   //             Search all descendant elements
   /              Search all child elements
   []             The predicate (specifies something about the element you are looking for)
   @           Specifies an element attribute. (For example, @title)
   
   .               Specifies the current node (useful when you want to look for an element’s children in the predicate)
   ..              Specifies the parent node
  text()       Gets the text of the element.
   
In the context of web scraping, XPath is a nice tool to have in your belt, as it allows you to write specifications of document locations more flexibly than CSS selectors.

Please subscribe to our blog to get notified when we publish the next blog post.

Source: http://blog.datahut.co/how-xpath-plays-vital-role-in-web-scraping/

Monday, 24 October 2016

What are the ethics of web scraping?

What are the ethics of web scraping?

Someone recently asked: "Is web scraping an ethical concept?" I believe that web scraping is absolutely an ethical concept. Web scraping (or screen scraping) is a mechanism to have a computer read a website. There is absolutely no technical difference between an automated computer viewing a website and a human-driven computer viewing a website. Furthermore, if done correctly, scraping can provide many benefits to all involved.

There are a bunch of great uses for web scraping. First, services like Instapaper, which allow saving content for reading on the go, use screen scraping to save a copy of the website to your phone. Second, services like Mint.com, an app which tells you where and how you are spending your money, uses screen scraping to access your bank's website (all with your permission). This is useful because banks do not provide many ways for programmers to access your financial data, even if you want them to. By getting access to your data, programmers can provide really interesting visualizations and insight into your spending habits, which can help you save money.

That said, web scraping can veer into unethical territory. This can take the form of reading websites much quicker than a human could, which can cause difficulty for the servers to handle it. This can cause degraded performance in the website. Malicious hackers use this tactic in what’s known as a "Denial of Service" attack.

Another aspect of unethical web scraping comes in what you do with that data. Some people will scrape the contents of a website and post it as their own, in effect stealing this content. This is a big no-no for the same reasons that taking someone else's book and putting your name on it is a bad idea. Intellectual property, copyright and trademark laws still apply on the internet and your legal recourse is much the same. People engaging in web scraping should make every effort to comply with the stated terms of service for a website. Even when in compliance with those terms, you should take special care in ensuring your activity doesn't affect other users of a website.

One of the downsides to screen scraping is it can be a brittle process. Minor changes to the backing website can often leave a scraper completely broken. Herein lies the mechanism for prevention: making changes to the structure of the code of your website can wreak havoc on a screen scraper's ability to extract information. Periodically making changes that are invisible to the user but affect the content of the code being returned is the most effective mechanism to thwart screen scrapers. That said, this is only a set-back. Authors of screen scrapers can always update them and, as there is no technical difference between a computer-backed browser and a human-backed browser, there's no way to 100% prevent access.

Going forward, I expect screen scraping to increase. One of the main reasons for screen scraping is that the underlying website doesn't have a way for programmers to get access to the data they want. As the number of programmers (and the need for programmers) increases over time, so too will the need for data sources. It is unreasonable to expect every company to dedicate the resources to build a programmer-friendly access point. Screen scraping puts the onus of data extraction on the programmer, not the company with the data, which can work out well for all involved.

Source: https://quickleft.com/blog/is-web-scraping-ethical/

Friday, 14 October 2016

How to do data scraping from PDF files using PHP?

How to do data scraping from PDF files using PHP?

Situations arise when you want to scrap data from PDF or want to search PDF files for matching text. Suppose you have website where users uploads PDF files and you want to give search functionality to user which searches all uploaded PDF file content for matching text and show all PDFs that contains matching search keywords.

Or you might have all London real estate properties details in PDF report file and you want to quickly grab scrape data from PDF reports then you might need PDF scraping library.

To integrate such functionality to web application is not similar to normal search functionality that we do with database search.

Here is the straight solution for this problem. This involves PDF Data Scraping to plain text and match search terms. I have written this post for the people who want to do PDF data scraping or want to make their PDF files to be Searchable.

We are going to use class named class.pdf2text.php which converts PDF text to into ASCII text, so the class is known for PDF extraction. This PHP class ignores anything in PDF that is not a text.

Let’s see very basic example (Taken from author’s file):

<?php

include "class.pdf2text.php";

$a = new PDF2Text();
$a->setFilename('web-scraping-service.pdf'); //grab the pdf file reside in folder where PHP files resides.

$a->decodePDF();//converts PDF content to text
echo $a->output();

?>

“Web Scraping is a technique using which programmer can automate the copy paste manual work and save the time. This is PDF w eb scraping using PHP. We at Web Data Scraping offer Web Scraping and Data Scraping Service. Vist our website www.webdata-scraping.com”

For more complex extraction you can apply regular expression on the text you get and can parse text that you want from PDF. But keep in mind this has limitation and do not work with all types of PDF extraction.

But the wonderful use of this class is to make utility that allow user to search inside PDF when they search on web search bar. Last but not least, You can also find many PDF scraping software available in market that can do complex scraping from PDF files.

Source: http://webdata-scraping.com/data-scraping-pdf-files-using-php/

Thursday, 22 September 2016

Run Code Template – New Feature Added to Fminer Web Scraping Tool

Run Code Template – New Feature Added to Fminer Web Scraping Tool

Fminer is one of the powerful web scraping software, I already given brief of all the Fminer features in previous post. In this post I am going to introduce one of the interesting feature of fminer which is Run Code Template that is recently added to Fminer, this feature is similar to “Fminer Run Code” action but it’s different in a way you can use it. The Run Code Action you can use inside the data scraping flow and python code get executed when scraper start running.

While Run Code Templates are the saved python code snippets that you can run on the data tables after scraping completes. Assume if you get white space in scraped data then you can easily trim this left and right spaces by just executing “strip_column” template, see the code of that template below.

'''Strip all data of a column in data table
Remove the blank of data in the head and the tail.
'''

tabName = '[%table1|data table%]'
colName = '[%table1.column1|table column for strip%]'

tab = tables[tabName]
for i, row in enumerate(tab):
    row[colName] = row[colName].strip()   
    tab.edit_row(i, row)

This template comes with Fminer and few other template like “merge_tables_with_same_columns”.  Below are the steps how you can execute template python code on scraped data.

Step 1: Click on second icon from right that says “Run Code” under the Data section

Step 2: One popup will appear, you need to click on “Templates” icon and choose the template you want to execute and then click on Ok.

Step 3: Now the window will appear for configuration that will ask you to choose the table and column under that table on which you want to execute the code. Now click on Ok again.

Step 4: Now you can see the code of that template, now you can click on execute icon and script will start running, based on number of records it will take time to finish execution.

In many web scraping projects I found this template code very handy for cleaning data and making life easy. Templates are stored at following path so you can create your own template with customized code.

C:\Program Files (x86)\FMiner\templates

I have created one template which I use to remove HTML code that comes while scraping badly organized HTML pages. Below is the code of template for stripping html:

'''Strip HTML will remove all html tags of a column in data table.
'''
import re
tabName = '[%table1|data table%]'
colName = '[%table1.column1|table column for substring%]'
colNew = '[%table1.column1|table column to add new data%]'
tab = tables[tabName]
for i, row in enumerate(tab):
    cleanr =re.compile('<.*?>')
    cleantext = re.sub(cleanr,'', row[colName])
    row[colNew] = cleantext 
    tab.edit_row(i, row)

Stay connected as I am going to post more code templates that will make your web scraping life easy and manipulate data on fly.

Source: http://webdata-scraping.com/run-code-template-new-feature-added-fminer-web-scraping-tool/

Monday, 12 September 2016

How to Use Microsoft Excel as a Web Scraping Tool

How to Use Microsoft Excel as a Web Scraping Tool

Microsoft Excel is undoubtedly one of the most powerful tools to manage information in a structured form. The immense popularity of Excel is not without reasons. It is like the Swiss army knife of data with its great features and capabilities. Here is how Excel can be used as a basic web scraping tool to extract web data directly into a worksheet. We will be using Excel web queries to make this happen.

Web queries is a feature of Excel which is basically used to fetch data on a web page into the Excel worksheet easily. It can automatically find tables on the webpage and would let you pick the particular table you need data from. Web queries can also be handy in situations where an ODBC connection is impossible to maintain apart from just extracting data from web pages. Let’s see how web queries work and how you can scrape HTML tables off the web using them.
Getting started

We’ll start with a simple Web query to scrape data from the Yahoo! Finance page. This page is particularly easier to scrape and hence is a good fit for learning the method. The page is also pretty straightforward and doesn’t have important information in the form of links or images. Here is the URL we will be using for the tutorial:

http://finance.yahoo.com/q/hp?s=GOOG

To create a new Web query:

1. Select the cell in which you want the data to appear.
2. Click on Data-> From Web
3. The New Web query box will pop up as shown below.

4. Enter the web page URL you need to extract data from in the Address bar and hit the Go button.
5. Click on the yellow-black buttons next to the table you need to extract data from.

6. After selecting the required tables, click on the Import button and you’re done. Excel will now start downloading the content of the selected tables into your worksheet.

Once you have the data scraped into your Excel worksheet, you can do a host of things like creating charts, sorting, formatting etc. to better understand or present the data in a simpler way.
Customizing the query

Once you have created a web query, you have the option to customize it according to your requirements. To do this, access Web query properties by right clicking on a cell with the extracted data. The page you were querying appears again, click on the Options button to the right of the address bar. A new pop up box will be displayed where you can customize how the web query interacts with the target page. The options here lets you change some of the basic things related to web pages like the formatting and redirections.

Apart from this, you can also alter the data range options by right clicking on a random cell with the query results and selecting Data range properties. The data range properties dialog box will pop up where you can make the required changes. You might want to rename the data range to something you can easily recognize like ‘Stock Prices’.

Auto refresh

Auto-refresh is a feature of web queries worth mentioning, and one which makes our Excel web scraper truly powerful. You can make the extracted data to be auto-refreshing so that your Excel worksheet will update the data whenever the source website changes. You can set how often you need the data to be updated from the source web page in data range options menu. The auto refresh feature can be enabled by ticking the box beside ‘Refresh every’ and setting your preferred time interval for updating the data.
Web scraping at scale

Although extracting data using Excel can be a great way to scrape html tables from the web, it is nowhere close to a real web scraping solution. This can prove to be useful if you are collecting data for your college research paper or you are a hobbyist looking for a cheap way to get your hands on some data. If data for business is your need, you will definitely have to depend on a web scraping provider with expertise in dealing with web scraping at scale. Outsourcing the complicated process that web scraping will also give you more room to deal with other things that need extra attention such as marketing your business.

Source: https://www.promptcloud.com/blog/how-to-use-excel-to-scrape-websites

Thursday, 1 September 2016

How Web Scraping can Help you Detect Weak spots in your Business

How Web Scraping can Help you Detect Weak spots in your Business

Business intelligence is not a new term. Businesses have always been employing experts for analysing the progress, market and industry trends to keep their growth graph going up. Now that we have big data and the tool to gather this data – Web scraping, business intelligence has become even more fruitful. In fact, business intelligence has become a necessary thing to survive now that the competition is fierce in every industry. This is the reason why most enterprises depend on web scraping solutions to gather the data relevant to their businesses. This data is highly insightful and dependable enough to make critical business decisions. Business intelligence from web scraping is definitely a game changer for companies as it can supply relevant and actionable data with minimal effort.

Most businesses have weak spots that are being overlooked or hidden from the plain sight. These weak spots, if left unnoticed can gradually result in the downfall of your company. Here is how you can use data acquired through web scraping to detect weak spots in your business and strengthen them.

Competitor analysis

Many a times, you can find out the flaws in your business by keeping a close watch on your competitors. Competitor analysis is something that we owe to web scraping as the level of competitive intelligence that you can derive from web scraping has never been achievable in the past. With crawling forums and social media sites where your target audience is, you can easily find out if your competitor is leveraging something you have overlooked. Competitor analysis is all about staying updated to each and every action by your competitors, so that you can always be prepared for their next strategic move. If your competitors are doing better than you, this data can be used to make a comparison between your business and theirs which would give you insights on where you lack.

Brand monitoring on Social media

With social media platforms acting like platforms where businesses and customers can interact with each other, the data available on these sites are increasingly becoming relevant to businesses. Any issues in your business operations will also reflect on your customer sentiments. Social media is a goldmine of sentiment data that can help you detect issues within your company. By analysing the posts that mention your brand or product on social media sites, you can identify what department of your company is functioning well and what isn’t.

For example, if you are an Ecommerce portal and many users are complaining about delivery issues from your company on social media, you might want to switch to a better logistics partner who does a better job. The ability to identify such issues at the earliest is extremely important and that’s where web scraping becomes a life saver. With social media scraping, monitoring your brand on social media is easy like never before and the chances of minor issues escalating to bigger ones is almost non-existent. Brand monitoring is extremely crucial if you are a business operating in the online space. Social media scraping solutions are provided by many leading web scraping companies, which totally eliminates the technical complications associated with the process for you.

Finding untapped opportunities

There are always new and untapped markets and opportunities that are relevant to your business. Finding them is not going to be an easy task with manual and outdated methods of research. Web scraping can fill this gap and help you find opportunities that your company can make use of to leverage your reach and progress. Sometimes, targeting the right audience makes all the difference that you’ve been trying to make. By using web crawling to find mentions of your relevant keywords on the web, you can easily stay updated on your niche and fill in to any new untapped markets. Web crawling for keywords is better explained in our previous blog.

Bottom line

It is not a cakewalk to stay ahead in the competition considering how competitive every industry has become in this digital age. It is crucial to find the weak spots and untapped opportunities of your business before someone else does. Of course, you can always use some help from the technology when you need it. Web scraping is clearly the best way to find and gather data that would help you figure these out. With web crawling solutions that can completely take care of this niche process, nothing is stopping you from using the data and insights that the web has in stock for your business.

Source: https://www.promptcloud.com/blog/web-scraping-detect-weak-spots-business

Wednesday, 24 August 2016

Business Intelligence & Data Warehousing in a Business Perspective

Business Intelligence & Data Warehousing in a Business Perspective

Business Intelligence

Business Intelligence has become a very important activity in the business arena irrespective of the domain due to the fact that managers need to analyze comprehensively in order to face the challenges.

Data sourcing, data analysing, extracting the correct information for a given criteria, assessing the risks and finally supporting the decision making process are the main components of BI.

In a business perspective, core stakeholders need to be well aware of all the above stages and be crystal clear on expectations. The person, who is being assigned with the role of Business Analyst (BA) for the BI initiative either from the BI solution providers' side or the company itself, needs to take the full responsibility on assuring that all the above steps are correctly being carried out, in a way that it would ultimately give the business the expected leverage. The management, who will be the users of the BI solution, and the business stakeholders, need to communicate with the BA correctly and elaborately on their expectations and help him throughout the process.

Data sourcing is an initial yet crucial step that would have a direct impact on the system where extracting information from multiple sources of data has to be carried out. The data may be on text documents such as memos, reports, email messages, and it may be on the formats such as photographs, images, sounds, and they can be on more computer oriented sources like databases, formatted tables, web pages and URL lists. The key to data sourcing is to obtain the information in electronic form. Therefore, typically scanners, digital cameras, database queries, web searches, computer file access etc, would play significant roles. In a business perspective, emphasis should be placed on the identification of the correct relevant data sources, the granularity of the data to be extracted, possibility of data being extracted from identified sources and the confirmation that only correct and accurate data is extracted and passed on to the data analysis stage of the BI process.

Business oriented stake holders guided by the BA need to put in lot of thought during the analyzing stage as well, which is the second phase. Synthesizing useful knowledge from collections of data should be done in an analytical way using the in-depth business knowledge whilst estimating current trends, integrating and summarizing disparate information, validating models of understanding, and predicting missing information or future trends. This process of data analysis is also called data mining or knowledge discovery. Probability theory, statistical analysis methods, operational research and artificial intelligence are the tools to be used within this stage. It is not expected that business oriented stake holders (including the BA) are experts of all the above theoretical concepts and application methodologies, but they need to be able to guide the relevant resources in order to achieve the ultimate expectations of BI, which they know best.

Identifying relevant criteria, conditions and parameters of report generation is solely based on business requirements, which need to be well communicated by the users and correctly captured by the BA. Ultimately, correct decision support will be facilitated through the BI initiative and it aims to provide warnings on important events, such as takeovers, market changes, and poor staff performance, so that preventative steps could be taken. It seeks to help analyze and make better business decisions, to improve sales or customer satisfaction or staff morale. It presents the information that manager's need, as and when they need it.

In a business sense, BI should go several steps forward bypassing the mere conventional reporting, which should explain "what has happened?" through baseline metrics. The value addition will be higher if it can produce descriptive metrics, which will explain "why has it happened?" and the value added to the business will be much higher if predictive metrics could be provided to explain "what will happen?" Therefore, when providing a BI solution, it is important to think in these additional value adding lines.

Data warehousing

In the context of BI, data warehousing (DW) is also a critical resource to be implemented to maximize the effectiveness of the BI process. BI and DW are two terminologies that go in line. It has come to a level where a true BI system is ineffective without a powerful DW, in order to understand the reality behind this statement, it's important to have an insight in to what DW really is.

A data warehouse is one large data store for the business in concern which has integrated, time variant, non volatile collection of data in support of management's decision making process. It will mainly have transactional data which would facilitate effective querying, analyzing and report generation, which in turn would give the management the required level of information for the decision making.

The reasons to have BI together with DW

At this point, it should be made clear why a BI tool is more effective with a powerful DW. To query, analyze and generate worthy reports, the systems should have information available. Importantly, transactional information such as sales data, human resources data etc. are available normally in different applications of the enterprise, which would obviously be physically held in different databases. Therefore, data is not at one particular place, hence making it very difficult to generate intelligent information.

The level of reports expected today, are not merely independent for each department, but managers today want to analyze data and relationships across the enterprise so that their BI process is effective. Therefore, having data coming from all the sources to one location in the form of a data warehouse is crucial for the success of the BI initiative. In a business viewpoint, this message should be passed and sold to the managements of enterprises so that they understand the value of the investment. Once invested, its gains could be achieved over several years, in turn marking a high ROI.

Investment costs for a DW in the short term may look quite high, but it's important to re-iterate that the gains are much higher and it will span over many years to come. It also reduces future development cost since with the DW any requested report or view could be easily facilitated. However, it is important to find the right business sponsor for the project. He or she needs to communicate regularly with executives to ensure that they understand the value of what's being built. Business sponsors need to be decisive, take an enterprise-wide perspective and have the authority to enforce their decisions.

Process

Implementation of a DW itself overlaps with some phases of the above explained BI process and it's important to note that in a process standpoint, DW falls in to the first few phases of the entire BI initiative. Gaining highly valuable information out of DW is the latter part of the BI process. This can be done in many ways. DW can be used as the data repository of application servers that run decision support systems, management Information Systems, Expert systems etc., through them, intelligent information could be achieved.

But one of the latest strategies is to build cubes out of the DW and allow users to analyze data in multiple dimensions, and also provide with powerful analytical supporting such as drill down information in to granular levels. Cube is a concept that is different to the traditional relational 2-dimensional tabular view, and it has multiple dimensions, allowing a manager to analyze data based on multiple factors, and not just two factors. On the other hand, it allows the user to select whatever the dimension he wish to choose for analyzing purposes and not be limited by one fixed view of data, which is called as slice & dice in DW terminology.

BI for a serious enterprise is not just a phase of a computerization process, but it is one of the major strategies behind the entire organizational drivers. Therefore management should sit down and build up a BI strategy for the company and identify the information they require in each business direction within the enterprise. Given this, BA needs to analyze the organizational data sources in order to build up the most effective DW which would help the strategized BI process.

High level Ideas on Implementation

At the heart of the data warehousing process is the extract, transform, and load (ETL) process. Implementation of this merely is a technical concern but it's a business concern to make sure it is designed in such a way that it ultimately helps to satisfy the business requirements. This process is responsible for connecting to and extracting data from one or more transactional systems (source systems), transforming it according to the business rules defined through the business objectives, and loading it into the all important data model. It is at this point where data quality should be gained. Of the many responsibilities of the data warehouse, the ETL process represents a significant portion of all the moving parts of the warehousing process.

Creation of a powerful DW depends on the correctness of data modeling, which is the responsibility of the database architect of the project, but BA needs to play a pivotal role providing him with correct data sources, data requirements and most importantly business dimensions. Business Dimensional modeling is a special method used for DW projects and this normally should be carried out by the BA and from there onwards technical experts should take up the work. Dimensions are perspectives specific to a business that could be used for analysis purposes. As an example, for a sales database, the dimensions could include Product, Time, Store, etc. Obviously these dimensions differ from one business to another and hence for each DW initiative those dimensions should be correctly identified and that could be very well done by a person who has experience in the DW domain and understands the business as well, making it apparent that DW BA is the person responsible.

Each of the identified dimensions would be turned in to a dimension table at the implementation phase, and the objective of the above explained ETL process is to fill up these dimension tables, which in turn will be taken to the level of the DW after performing some more database activities based on a strong underlying data model. Implementation details are not important for a business stakeholder but being aware of high level process to this level is important so that they are also on the same pitch as that of the developers and can confirm that developers are actually doing what they are supposed to do and would ultimately deliver what they are supposed to deliver.

Security is also vital in this regard, since this entire effort deals with highly sensitive information and identification of access right to specific people to specific information should be correctly identified and captured at the requirements analysis stage.

Advantages

There are so many advantages of BI system. More presentation of analytics directly to the customer or supply chain partner will be possible. Customer scores, customer campaigns and new product bundles can all be produced from analytic structures resulting in high customer retention and creation of unique products. More collaboration within information can be achieved from effective BI. Rather than middle managers getting great reports and making their own areas look good, information will be conveyed into other functions and rapidly shared to create collaborative decisions increasing the efficiency and accuracy. The return on human capital will be greatly increased.

Managers at all levels will save their time on data analysis, and hence saving money for the enterprise, as the time of managers is equal to money in a financial perspective. Since powerful BI would enable monitoring internal processes of the enterprises more closely and allow making them more efficient, the overall success of the organization would automatically grow. All these would help to derive a high ROI on BI together with a strong DW. It is a common experience to notice very high ROI figures on such implementations, and it is also important to note that there are many non-measurable gains whilst we consider most of the measurable gains for the ROI calculation. However, at a stage where it is intended to take the management buy-in for the BI initiative, it's important to convert all the non measurable gains in to monitory values as much as possible, for example, saving of managers time can be converted in to a monitory value using his compensation.

The author has knowledge in both Business and IT. Started career as a Software Engineer and moved to work in the business analysis area of a premier US based software company.

Source: http://ezinearticles.com/?Business-Intelligence-and-Data-Warehousing-in-a-Business-Perspective&id=35640

Friday, 12 August 2016

Getting Data from the Web

Getting Data from the Web

You’ve tried everything else, and you haven’t managed to get your hands on the data you want. You’ve found the data on the web, but, alas — no download options are available and copy-paste has failed you. Fear not, there may still be a way to get the data out. For example you can:

Get data from web-based APIs, such as interfaces provided by online databases and many modern web applications (including Twitter, Facebook and many others). This is a fantastic way to access government or commercial data, as well as data from social media sites.

Extract data from PDFs. This is very difficult, as PDF is a language for printers and does not retain much information on the structure of the data that is displayed within a document. Extracting information from PDFs is beyond the scope of this book, but there are some tools and tutorials that may help you do it.

Screen scrape web sites. During screen scraping, you’re extracting structured content from a normal web page with the help of a scraping utility or by writing a small piece of code. While this method is very powerful and can be used in many places, it requires a bit of understanding about how the web works.

With all those great technical options, don’t forget the simple options: often it is worth to spend some time searching for a file with machine-readable data or to call the institution which is holding the data you want.

In this chapter we walk through a very basic example of scraping data from an HTML web page.
What is machine-readable data?

The goal for most of these methods is to get access to machine-readable data. Machine readable data is created for processing by a computer, instead of the presentation to a human user. The structure of such data relates to contained information, and not the way it is displayed eventually. Examples of easily machine-readable formats include CSV, XML, JSON and Excel files, while formats like Word documents, HTML pages and PDF files are more concerned with the visual layout of the information. PDF for example is a language which talks directly to your printer, it’s concerned with position of lines and dots on a page, rather than distinguishable characters.
Scraping web sites: what for?

Everyone has done this: you go to a web site, see an interesting table and try to copy it over to Excel so you can add some numbers up or store it for later. Yet this often does not really work, or the information you want is spread across a large number of web sites. Copying by hand can quickly become very tedious, so it makes sense to use a bit of code to do it.

The advantage of scraping is that you can do it with virtually any web site — from weather forecasts to government spending, even if that site does not have an API for raw data access.
What you can and cannot scrape

There are, of course, limits to what can be scraped. Some factors that make it harder to scrape a site include:

Badly formatted HTML code with little or no structural information e.g. older government websites.

Authentication systems that are supposed to prevent automatic access e.g. CAPTCHA codes and paywalls.

Session-based systems that use browser cookies to keep track of what the user has been doing.

A lack of complete item listings and possibilities for wildcard search.

Blocking of bulk access by the server administrators.

Another set of limitations are legal barriers: some countries recognize database rights, which may limit your right to re-use information that has been published online. Sometimes, you can choose to ignore the license and do it anyway — depending on your jurisdiction, you may have special rights as a journalist. Scraping freely available Government data should be fine, but you may wish to double check before you publish. Commercial organizations — and certain NGOs — react with less tolerance and may try to claim that you’re “sabotaging” their systems. Other information may infringe the privacy of individuals and thereby violate data privacy laws or professional ethics.
Tools that help you scrape

There are many programs that can be used to extract bulk information from a web site, including browser extensions and some web services. Depending on your browser, tools like Readability (which helps extract text from a page) or DownThemAll (which allows you to download many files at once) will help you automate some tedious tasks, while Chrome’s Scraper extension was explicitly built to extract tables from web sites. Developer extensions like FireBug (for Firefox, the same thing is already included in Chrome, Safari and IE) let you track exactly how a web site is structured and what communications happen between your browser and the server.

ScraperWiki is a web site that allows you to code scrapers in a number of different programming languages, including Python, Ruby and PHP. If you want to get started with scraping without the hassle of setting up a programming environment on your computer, this is the way to go. Other web services, such as Google Spreadsheets and Yahoo! Pipes also allow you to perform some extraction from other web sites.
How does a web scraper work?

Web scrapers are usually small pieces of code written in a programming language such as Python, Ruby or PHP. Choosing the right language is largely a question of which community you have access to: if there is someone in your newsroom or city already working with one of these languages, then it makes sense to adopt the same language.

While some of the click-and-point scraping tools mentioned before may be helpful to get started, the real complexity involved in scraping a web site is in addressing the right pages and the right elements within these pages to extract the desired information. These tasks aren’t about programming, but understanding the structure of the web site and database.

When displaying a web site, your browser will almost always make use of two technologies: HTTP is a way for it to communicate with the server and to request specific resource, such as documents, images or videos. HTML is the language in which web sites are composed.
The anatomy of a web page

Any HTML page is structured as a hierarchy of boxes (which are defined by HTML “tags”). A large box will contain many smaller ones — for example a table that has many smaller divisions: rows and cells. There are many types of tags that perform different functions — some produce boxes, others tables, images or links. Tags can also have additional properties (e.g. they can be unique identifiers) and can belong to groups called ‘classes’, which makes it possible to target and capture individual elements within a document. Selecting the appropriate elements this way and extracting their content is the key to writing a scraper.

Viewing the elements in a web page: everything can be broken up into boxes within boxes.

To scrape web pages, you’ll need to learn a bit about the different types of elements that can be in an HTML document. For example, the <table> element wraps a whole table, which has <tr> (table row) elements for its rows, which in turn contain <td> (table data) for each cell. The most common element type you will encounter is <div>, which can basically mean any block of content. The easiest way to get a feel for these elements is by using the developer toolbar in your browser: they will allow you to hover over any part of a web page and see what the underlying code is.

Tags work like book ends, marking the start and the end of a unit. For example <em> signifies the start of an italicized or emphasized piece of text and </em> signifies the end of that section. Easy.

An example: scraping nuclear incidents with Python

NEWS is the International Atomic Energy Agency’s (IAEA) portal on world-wide radiation incidents (and a strong contender for membership in the Weird Title Club!). The web page lists incidents in a simple, blog-like site that can be easily scraped.

To start, create a new Python scraper on ScraperWiki and you will be presented with a text area that is mostly empty, except for some scaffolding code. In another browser window, open the IAEA site and open the developer toolbar in your browser. In the “Elements” view, try to find the HTML element for one of the news item titles. Your browser’s developer toolbar helps you connect elements on the web page with the underlying HTML code.

Investigating this page will reveal that the titles are <h4> elements within a <table>. Each event is a <tr> row, which also contains a description and a date. If we want to extract the titles of all events, we should find a way to select each row in the table sequentially, while fetching all the text within the title elements.

In order to turn this process into code, we need to make ourselves aware of all the steps involved. To get a feeling for the kind of steps required, let’s play a simple game: In your ScraperWiki window, try to write up individual instructions for yourself, for each thing you are going to do while writing this scraper, like steps in a recipe (prefix each line with a hash sign to tell Python that this not real computer code). For example:

  # Look for all rows in the table
  # Unicorn must not overflow on left side.

Try to be as precise as you can and don’t assume that the program knows anything about the page you’re attempting to scrape.

Once you’ve written down some pseudo-code, let’s compare this to the essential code for our first scraper:

  import scraperwiki
  from lxml import html

In this first section, we’re importing existing functionality from libraries — snippets of pre-written code. scraperwiki will give us the ability to download web sites, while lxml is a tool for the structured analysis of HTML documents. Good news: if you are writing a Python scraper with ScraperWiki, these two lines will always be the same.

  url = "http://www-news.iaea.org/EventList.aspx"
  doc_text = scraperwiki.scrape(url)
  doc = html.fromstring(doc_text)

Next, the code makes a name (variable): url, and assigns the URL of the IAEA page as its value. This tells the scraper that this thing exists and we want to pay attention to it. Note that the URL itself is in quotes as it is not part of the program code but a string, a sequence of characters.

We then use the url variable as input to a function, scraperwiki.scrape. A function will provide some defined job — in this case it’ll download a web page. When it’s finished, it’ll assign its output to another variable, doc_text. doc_text will now hold the actual text of the website — not the visual form you see in your browser, but the source code, including all the tags. Since this form is not very easy to parse, we’ll use another function, html.fromstring, to generate a special representation where we can easily address elements, the so-called document object model (DOM).

  for row in doc.cssselect("#tblEvents tr"):
  link_in_header = row.cssselect("h4 a").pop()
  event_title = link_in_header.text
  print event_title

In this final step, we use the DOM to find each row in our table and extract the event’s title from its header. Two new concepts are used: the for loop and element selection (.cssselect). The for loop essentially does what its name implies; it will traverse a list of items, assigning each a temporary alias (row in this case) and then run any indented instructions for each item.

The other new concept, element selection, is making use of a special language to find elements in the document. CSS selectors are normally used to add layout information to HTML elements and can be used to precisely pick an element out of a page. In this case (Line. 6) we’re selecting #tblEvents tr which will match each <tr> within the table element with the ID tblEvents (the hash simply signifies ID). Note that this will return a list of <tr> elements.

As can be seen on the next line (Line. 7), where we’re applying another selector to find any <a> (which is a hyperlink) within a <h4> (a title). Here we only want to look at a single element (there’s just one title per row), so we have to pop it off the top of the list returned by our selector with the .pop() function.

Note that some elements in the DOM contain actual text, i.e. text that is not part of any markup language, which we can access using the [element].text syntax seen on line 8. Finally, in line 9, we’re printing that text to the ScraperWiki console. If you hit run in your scraper, the smaller window should now start listing the event’s names from the IAEA web site.

  figs/incoming/04-DD.png
  Figure 58. A scraper in action (ScraperWiki)

You can now see a basic scraper operating: it downloads the web page, transforms it into the DOM form and then allows you to pick and extract certain content. Given this skeleton, you can try and solve some of the remaining problems using the ScraperWiki and Python documentation:

Can you find the address for the link in each event’s title?

Can you select the small box that contains the date and place by using its CSS class name and extract the element’s text?

ScraperWiki offers a small database to each scraper so you can store the results; copy the relevant example from their docs and adapt it so it will save the event titles, links and dates.

The event list has many pages; can you scrape multiple pages to get historic events as well?

As you’re trying to solve these challenges, have a look around ScraperWiki: there are many useful examples in the existing scrapers — and quite often, the data is pretty exciting, too. This way, you don’t need to start off your scraper from scratch: just choose one that is similar, fork it and adapt to your problem.

Source: http://datajournalismhandbook.org/1.0/en/getting_data_3.html

Friday, 5 August 2016

Data Mining vs Screen-Scraping

Data Mining vs Screen-Scraping

Data mining isn't screen-scraping. I know that some people in the room may disagree with that statement, but they're actually two almost completely different concepts.

In a nutshell, you might state it this way: screen-scraping allows you to get information, where data mining allows you to analyze information. That's a pretty big simplification, so I'll elaborate a bit.

The term "screen-scraping" comes from the old mainframe terminal days where people worked on computers with green and black screens containing only text. Screen-scraping was used to extract characters from the screens so that they could be analyzed. Fast-forwarding to the web world of today, screen-scraping now most commonly refers to extracting information from web sites. That is, computer programs can "crawl" or "spider" through web sites, pulling out data. People often do this to build things like comparison shopping engines, archive web pages, or simply download text to a spreadsheet so that it can be filtered and analyzed.

Data mining, on the other hand, is defined by Wikipedia as the "practice of automatically searching large stores of data for patterns." In other words, you already have the data, and you're now analyzing it to learn useful things about it. Data mining often involves lots of complex algorithms based on statistical methods. It has nothing to do with how you got the data in the first place. In data mining you only care about analyzing what's already there.

The difficulty is that people who don't know the term "screen-scraping" will try Googling for anything that resembles it. We include a number of these terms on our web site to help such folks; for example, we created pages entitled Text Data Mining, Automated Data Collection, Web Site Data Extraction, and even Web Site Ripper (I suppose "scraping" is sort of like "ripping"). So it presents a bit of a problem-we don't necessarily want to perpetuate a misconception (i.e., screen-scraping = data mining), but we also have to use terminology that people will actually use.

Source: http://ezinearticles.com/?Data-Mining-vs-Screen-Scraping&id=146813

Thursday, 12 May 2016

Beginner’s guide to Web Scraping in Python (using Beautiful Soup)

Introduction
The need and importance of extracting data from the web is becoming increasingly loud and clear. Every few weeks, I find myself in a

situation where we need to extract data from the web. For example, last week we were thinking of creating an index of hotness and

sentiment about various data science courses available on the internet. This would not only require finding out new courses, but also

scrape the web for their reviews and then summarizing them in a few metrics! This is one of the problems / products, whose efficacy

depends more on web scrapping and information extraction (data collection) than the techniques used to summarize the data.

Ways to extract information from web

There are several ways to extract information from the web. Use of APIs being probably the best way to extract data from a website.

Almost all large websites like Twitter, Facebook, Google, Twitter, StackOverflow provide APIs to access their data in a more structured

manner. If you can get what you need through an API, it is almost always preferred approach over web scrapping. This is because if you

are getting access to structured data from the provider, why would you want to create an engine to extract the same information.

Sadly, not all websites provide an API. Some do it because they do not want the readers to extract huge information in structured way,

while others don’t provide APIs due to lack of technical knowledge. What do you do in these cases? Well, we need to scrape the website

to fetch the information.

There might be a few other ways like RSS feeds, but they are limited in their use and hence I am not including them in the discussion

here.

What is Web Scraping?

Web scraping is a computer software technique of extracting information from websites. This technique mostly focuses on the

transformation of unstructured data (HTML format) on the web into structured data (database or spreadsheet).

You can perform web scrapping in various ways, including use of Google Docs to almost every programming language. I would resort to

Python because of its ease and rich eocsystem. It has a library known as ‘Beautiful Soup’ which assists this task. In this article, I’ll show

you the easiest way to learn web scraping using python programming.

For those of you, who need a non-programming way to extract information out of web pages, you can also look at import.io . It provides a

GUI driven interface to perform all basic web scraping operations. The hackers can continue to read this article!

Libraries required for web scraping

As we know, python is a open source programming language. You may find many libraries to perform one function. Hence, it is necessary

to find the best to use library. I prefer Beautiful Soup (python library), since it is easy and intuitive to work on. Precisely, I’ll use two

Python modules for scraping data:

Urllib2: It is a Python module which can be used for fetching URLs. It defines functions and classes to help with URL actions (basic and

digest authentication, redirections, cookies, etc). For more detail refer to the documentation page.

Beautiful Soup: It is an incredible tool for pulling out information from a webpage. You can use it to extract tables, lists, paragraph and

you can also put filters to extract information from web pages. In this article, we will use latest version Beautiful Soup 4. You can look at

the installation instruction in its documentation page.

Beautiful Soup does not fetch the web page for us. That’s why, I use urllib2 in combination with the BeautifulSoup library.

Python has several other options for HTML scraping in addition to Beatiful Soup. Here are some others:

    -mechanize
    -scrapemark
    -scrapy

Basics – Get familiar with HTML (Tags)

While performing web scarping, we deal with html tags. Thus, we must have good understanding of them.                      
 you already know basics of HTML, you can skip this section. Below is the basic syntax of HTML:
  This syntax has various tags as elaborated below:

    <!DOCTYPE html> : HTML documents must start with a type declaration
      HTML document is contained between <html> and </html>
      The visible part of the HTML document is between <body> and </body>
       HTML headings are defined with the <h1> to <h6> tags
       HTML paragraphs are defined with the <

Scrapping a web Page using Beautiful Soup

Here, I am scraping data from a Wikipedia page. Our final goal is to extract list of state, union territory capitals in India. And some basic

detail like establishment, former capital and others form this wikipedia page. Let’s learn with doing this project step wise step:

Import necessary libraries:

#import the library used to query a website
import urllib2
#specify the url
wiki = "https://en.wikipedia.org/wiki/List_of_state_and_union_territory_capitals_in_India"
#Query the website and return the html to the variable 'page'
page = urllib2.urlopen(wiki)
#import the Beautiful soup functions to parse the data returned from the website
from bs4 import Beautiful Soup
#Parse the html in the 'page' variable, and store it in Beautiful Soup format
soup = Beautiful Soup(page)

Use function “prettify” to look at nested structure of HTML page

Above, you can see that structure of the HTML tags. This will help you to know about different available tags and how can you play with

these to extract information.

Work with HTML tags

    soup.<tag>: Return content between opening and closing tag including tag.
    In[30]:soup.title
    Out[30]:<title>List of state and union territory capitals in India - Wikipedia, the free encyclopedia</title>
    soup.<tag>.string: Return string within given tag
    In [38]:soup.title.string
    Out[38]:u'List of state and union territory capitals in India - Wikipedia, the free encyclopedia'

Find all the links within page’s <a> tags::  We know that, we can tag a link using tag “<a>”. So, we should go with option soup.a and it

should return the links available in the web page. Let’s do it.

    In [40]:soup.a
    Out[40]:<a id="top"></a>

Above, you can see that, we have only one output. Now to extract all the links within <a>, we will use

Above, it is showing all links including titles, links and other information.  Now to show only links, we need to iterate over each a tag and

then return the link using attribute “href” with get.

Find the right table: As we are seeking a table to extract information about state capitals, we should identify the right table first. Let’s

write the command to extract information within all table tags.

all_tables=soup.find_all('table')

Now to identify the right table, we will use attribute “class” of table and use it to filter the right table. In chrome, you can check the class

name by right click on the required table of web page –> Inspect element –> Copy the class name OR go through the output of above

command find the class name of right table.

right_table=soup.find('table', class_='wikitable sortable plainrowheaders')

\right_table

Extract the information to DataFrame: Here, we need to iterate through each row (tr) and then assign each element of tr (td) to a variable

and append it to a list. Let’s first look at the HTML structure of the table (I am not going to extract information for table heading <th>)
Above, you can notice that second element of <tr> is within tag <th> not <td> so we need to take care for this. Now to access value of

each element, we will use “find(text=True)” option with each element.  Let’s look at the code

#Generate lists

A=[]
B=[]
C=[]
D=[]
E=[]
F=[]
G=[]
for row in right_table.findAll("tr"):

    cells = row.findAll('td')
    states=row.findAll('th') #To store second column data
    if len(cells)==6: #Only extract table body not heading
        A.append(cells[0].find(text=True))
        B.append(states[0].find(text=True))
        C.append(cells[1].find(text=True))
        D.append(cells[2].find(text=True))
        E.append(cells[3].find(text=True))
        F.append(cells[4].find(text=True))
        G.append(cells[5].find(text=True))

#import pandas to convert list to data frame

import pandas as pd
df=pd.DataFrame(A,columns=['Number'])
df['State/UT']=B
df['Admin_Capital']=C
df['Legislative_Capital']=D
df['Judiciary_Capital']=E
df['Year_Capital']=F
df['Former_Capital']=G
df

Similarly, you can perform various other types of web scraping using “Beautiful Soup“. This will reduce your manual efforts to collect data

from web pages. You can also look at the other attributes like .parent, .contents, .descendants and .next_sibling, .prev_sibling and

various attributes to navigate using tag name. These will help you to scrap the web pages effectively.-

But, why can’t I just use Regular Expressions?

Now, if you know regular expressions, you might be thinking that you can write code using regular expression which can do the same

thing for you. I definitely had this question. In my experience with Beautiful Soup and Regular expressions to do same thing I found out:

Code written in Beautiful Soup is usually more robust than the one written using regular expressions. Codes written with regular

expressions need to be altered with any changes in pages. Even Beautiful Soup needs that in some cases, it is just that Beautiful Soup is

relatively better.

Regular expressions are much faster than Beautiful Soup, usually by a factor of 100 in giving the same outcome.

So, it boils down to speed vs. robustness of the code and there is no universal winner here. If the information you are looking for can be

extracted with simple regex statements, you should go ahead and use them. For almost any complex work, I usually recommend

BeautifulSoup more than regex.

End Note

In this article, we looked at web scraping methods using “Beautiful Soup” and “urllib2” in Python. We also looked at the basics of HTML

and perform the web scraping step by step while solving a challenge. I’d recommend you to practice this and use it for collecting data

from web pages.


 Source : http://www.analyticsvidhya.com/blog/2015/10/beginner-guide-web-scraping-beautiful-soup-python/

Wednesday, 27 April 2016

Extensive Benefits of Data Mining Services to Marketing – Retail and Outreach Sectors…!!!

There is a vast ocean out there – An ocean of information on internet which is massive, brimming with a lot of data; in fact, it is constantly getting updated, increase the volume with each passing day. In fact, it is believed that around 90% of total information generated in the last two years, is now available on the internet.

Picking right set of information from this heap of data is like searching a needle in the haystack. It is almost next to impossible to search it manually – You need a powerful magnet in form of data mining service provider…!!!

Data mining services work like a magnet – It helps you in finding the right kind of information from huge databases available in the digital world. And with databases getting mammoth every minute, the importance of partnering with a professional and reliable data mining company cannot be overlooked.Though, loaded with a lot of negative connotations; data mining still reigns like a king! In fact, in order to truly appreciate the concept behind data mining, one needs to know it in its entirety.

Every coin has two sides – If there is a brighter side; there tends to be a dark side as well. Though, advantages of web extraction, outweighs disadvantages the fact is it is always the dark underbelly that is highlighted and shown to the world. However, as wise men say, focus on positive sides – Lets see what amazing advantages it can offer to your business and how well you can gain from hiring a professional data mining services.

Upside or Advantage of Data Extraction Services:

While data mining is used primarily in business, it is interesting to know that benefits of data mining goes beyond and across boundaries; it helps various industries as well.

Marketing/Retailing

Data mining can prove to be extremely helpful to the marketers and retailers who are looking out for potential clients as well as aspires to maintain consumer satisfaction. This is one of the methods that allows the businesses to know their potential clients better by acquiring their personal information and preferences.

Not just data extraction helps in determining the trends in goods and services by presenting an overview of online data. With adequate information, you can improve your goods and services, along with changing or choosing the ones which are more in demand. Consequently, success in business has been made quicker and easier these days because of data mining.

Streamline Outreach

Outreach forms an integral part of any business – And to effectively carry out outreach activities; one needs to have a huge cache of database, that can help the marketers to learn how to approach a particular set of customers. Information like that includes relevant e-mail addresses, mailing addresses or social media pages needs to be streamlined any mailers to get the best results.

Data extraction makes this easier; since it gets all the updated information; and in process saves your time and money.

And as it is “the lotus flower grows in mud, but makes our world fragrant” – data mining services is marred by criticism and controversy; however, its extensive advantages outweighs these negativity to a great extent.

Source : http://www.habiledata.com/blog/extensive-benefits-of-data-mining-services-to-marketing-retail-and-outreach-sectors/