Tuesday, 17 January 2017

Searching the Web Using Text Mining and Data Mining

Searching the Web Using Text Mining and Data Mining

There are many types of financial analysis tools that are useful for various purposes. Most of these are easily available online. Two such tools of software for financial analysis include the text mining and data mining. Both methods have been discussed in details in the following section.

The features of Text Mining It is a way by which information of high-quality can be derived from a text. It involves giving structure to the input text then deriving patterns within the data that has been structured. Finally, the process of evaluating and interpreting the output is undertaken.

This form of mining usually involves the process of structuring the text input, and deriving patterns within the structured data, and finally evaluating and interpreting the data. It differs from the way we are familiar with in searching the web. The goal of this method is to find unknown information. It can be done with analyses in topics that that were not researched before.

What is Data Mining? It is the process of the extraction of patterns from the data. Nowadays, it has become very vital to transform this data into information. It is particularly used in marketing practices as well as fraud detection and surveillance. We can extract hidden information from huge databases of information. It can be used to predict future trends as well as to aid the company business to make knowledgeable quick decisions.

Working of data mining: Modeling technique is used to perform the operation of such form of mining. For these techniques, you must need to be fully integrated with a data warehouse as well as financial analysis tools. Some of the areas where this method is used are:

 - Pharmaceutical companies which need to analyze its sales force and to achieve their targets.
 - Credit card companies and transportation companies with sales force.
 - Also large consumer goods companies use such mining techniques.
 - With this method, a retailer may utilize POS or point-of-sale data of customer purchases in order to develop  strategies for sale promotion.

The major elements of Data mining:

1. Extracting, transforming, and sending load transaction data on the data warehouse of the server system.

2. Storing and managing the data in for database systems that are multidimensional in nature.

3. Presenting data to the IT professionals and business analysts for processing.

4. Presenting the data to the application software for analyses.

5. Presentation of the data in dynamic ways like graph or table.

The main point of difference between the two types of mining is that text mining checks the patterns from natural text instead of databases where the data is structured.

Data mining software supports the entire process of such mining and discovery of knowledge. These are available on the internet. Data mining software serves as one of the best financial analysis tools. You can avail of data mining software suites and their reviews freely over the internet and easily compare between them.

Source:http://ezinearticles.com/?Searching-the-Web-Using-Text-Mining-and-Data-Mining&id=5299621

Saturday, 7 January 2017

Data Mining: Its Description and Uses

Data Mining: Its Description and Uses

Data mining also known as the process of analyzing the KDD which stands for Knowledge Discovery in Databases is a part of statistics and computer science. It is a process which aims to find out many various patterns in enormous sets of relational data.

It uses ways at the fields of machine learning, database systems, artificial intelligence, and statistics. It permits users to examine data from many various perspectives, sort it, and summarize the identified relationships.

In general, the objective of data mining process is to obtain info out of a data set and convert it into a comprehensible outline. Also, it includes the following: data processing, data management and database aspects, visualization, complexity considerations, online updating, inference and model considerations, and interestingness metrics.

On the other hand, the actual data mining assignment is the semi-automatic or automatic exploration of huge quantities of information to extract patterns that are interesting and previously unknown. Such patterns can be the unusual records or the anomaly detection, data records groups or the cluster analysis, and the dependencies or the association rule mining. Usually, this involves utilizing database methods like spatial indexes. Such patters could be perceived as a type of summary of input data, and could be used in further examination or, for example, in predictive analysis and machine learning.

Today, data mining is utilized by different consumer-focused companies like those in the financial, retails, marketing, and communications fields. It permits such companies to find out relationships among the internal aspects like staff skills, price, product positioning, and external aspects like customer information, competition, and economic indicators. Additionally, it allows them to define the effect on corporate profits, sales, and customer satisfaction; and dig into the summary information to be able to see transactional data in detail.

With data mining process, a retailer can make use of point-of-scale customer purchases records to send promotions based on the purchase history of a client. The retailer can improve products and campaigns or promotions that can be appealing to a definite customer group by using mining data from comment cards.

Generally, any of the following relationships are obtained.

1. Associations: Data could be mined to recognize associations.
2. Clusters: Data are sorted based on a rational relationships or consumer preferences.
3. Sequential Patters: Data is mined to expect patterns and trends in behavior.
4. Classes: Data that are stored are utilized to trace data in predetermined segments.

Source : http://ezinearticles.com/?Data-Mining:-Its-Description-and-Uses&id=7252273